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Mining activities produce metal-
contaminated sediments

• Metals enter aquatic ecosystems from mining, ore 
processing, and smelting.  

• At neutral pH, metals tend to move from water to 
sediment: 

– settling of particulates (e.g. mine wastes);  

– precipitation of insoluble metal species; 

– sorption of metals on sediment particles.  

 High concentrations of metals in bed sediments can lead to 
toxic effects on benthic organisms. 
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Applications of sediment toxicity testing

• Ecological risk assessment (e.g., Superfund)

• Document ecological injury (e.g., NRDAR)

• Pre- and post-remediation assessment

• Effluent monitoring/Toxicity Identification Evaluation

• Characterize waste or dredged material

• Establish or validate sediment quality guidelines
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CERC mining-related sediment studies
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Upper Columbia River (WA)

Clark Fork River (MT)

Whiskeytown NRA (CA)

San Carlos Reservoir (AZ)

Upper Animas River (CO)

Tri-State (MO/KS/OK) 

Old Lead Belt (MO)

Viburnum Trend (MO)

Palmerton smelter (PA)

Vermont Copper Belt



Types of sediment test methods

• Whole-sediment toxicity testing

– Simulate natural water+sediment exposure

• Pore-water toxicity testing

– Isolate water exposure route

• Elutriate testing (sediment-water suspension)

– Effects of dredging or resuspension

• Sediment extracts or leachates

– Source identification; prioritize cleanups
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Whole-sediment testing
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• Goal: simulate surficial sediments and overlying water

– Allow development of limited depth gradient (3-4 cm)

– Realistic role of overlying water (water quality, replacement rate)



Whole-sediment toxicity tests

• Direct measure of effects on benthic organisms

• Support cause-effect findings

• Wide applicability 

• Limited special equipment is required

• Rapid and inexpensive

• Legal and scientific precedents

• Integrates interactions of contaminant mixtures

• Amenable to field validation
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Pore-water testing
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• Goal: isolate aqueous exposure route

– Use standard aquatic test organisms

• Advantages:  

– Simplicity  and sensitivity of test methods

– Compare aqueous vs. solid-phase exposure

• Disadvantages

– Difficulty of pore-water collection

– Artifacts of testing with water-column organisms

Daphnid

Fathead Minnow



Comparison of exposure routes
Palmerton smelter, PA (Besser et al. 2009)

 Tested surface water, pore water, and sediment with Hyalella

 Toxicity in surface water and pore water from same three sites

 Limited toxicity of whole sediment (one site)

 Consistent with metal inputs from groundwater seepage

 Fine sediments scarce in contaminated stream reach
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Sediment vs. Pore-water tests
Viburnum Trend MO  (Besser et al 2008a)

 Whole-sediment tests with Hyalella (left) identified several toxic sites

 Pore-water tests with Ceriodaphnia (right) were more sensitive, but 
had variable survival in reference sites (green)

 Limited tolerance for PW constituents (e.g. ammonia)
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Hyalella Ceriodaphnia
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Characteristics of sediment test 
organisms

• Sensitivity to toxicants (metals)

• Availability / Ease of culture

• Life cycle / Potential endpoints

• Taxonomic group

• Distribution and abundance

• Ecological importance

11



Standard sediment test organisms
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Amphipod (Hyalella) Midge (Chironomus) Oligochaete (Lumbriculus)

Mussel (Lampsilis)

Alternative test organisms
Mayfly (Hexagenia)



Sensitivity of benthic taxa to metals
Ni-spiked sediment (Besser, unpublished data)
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•Differences among species:
HA=Hyalella (amphipod)

GP=Gammarus (amphipod)

HS=Hexagenia (mayfly)

CD, CR=Chironomus (midge)

TT=Tubifex (oligochaete)

LV=Lumbriculus (oligochaete)

LS=Lampsilis (mussel)

•Sediment differences
 Metal bioavailability

Sediment Nickel
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Differences in sensitivity
Big River, Missouri (Besser et al. 2010)

 Toxicity to mussels was more closely associated with  

sediment metals. 14
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Test endpoints

• Survival 

– Severe effect; acute or chronic test

• Growth (length or weight)

– Often more sensitive than survival

• Biomass production

– Sensitive; integrates effects on survival and growth

• Reproduction

– Sensitive but variable; long/complex test methods; 

• Bioaccumulation

– Document bioavailability; characterize dietary exposure of fishes
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Hyalella survival and reproduction
Viburnum Trend, MO (Besser et al. 2008a)

 Survival was high in reference sediments (green); few toxic sites

 Reproduction was sensitive, but varied among reference sites

 Influence of nutrients, organic matter, etc.
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Interpretation of toxicity data

• Control sediments – define test performance

– Quality assurance for studies with field-collected sediment

– Treatment comparisons in experimental studies

• Reference sediments – define ‘baseline’ conditions

– Single site for simple study area (e.g. upstream/downstream)

– Multiple sites (‘reference envelope’) to represent  broader area

• Concentration-response relationship

– Experimental studies (e.g., spiking) or field data with gradient of 
metal concentrations

– Estimate toxicity value (e.g., LC50, EC20)
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Comparisons to reference site(s)
(Seal et al. 2010; Besser et al. 2010)

 Ely Mine, VT: upstream reference sites to match each stream segment

 Big River, MO: multiple reference sites (both upstream and regional) 
– Wide range of sediment type from headwaters to mouth
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Laboratory-Field Comparisons

• Establish cause-effect relationships 

– Community data can be influenced by historic impacts  (e.g. 
species loss) and habitat alteration

– Lab tests use taxa of interest, minimize influence of habitat

• Estimate site-specific toxicity thresholds

– Use of local species or surrogate

– Simulate ambient water quality
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Laboratory  vs. field responses
(Besser et al. 2010; Seal et al 2010, in press)

 Missouri:  reduced mussel growth predicts community impacts

 Vermont streams: gradient of amphipod survival vs. benthos taxa richness

 Acid sites (red): low taxa richness, but sediment not toxic
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Metal bioavailability in sediment

• Estimate available metal fractions

– Selective extractions (e.g., Luoma 1989, Tessier et al. 1984)

• Characterize major metal-binding phases

– Acid-volatile sulfide and total organic carbon (Ankley et al 
1996; USEPA 2005)

– AVS strongly limits metal solubility: Ag, Cu, Pb, Cd, Zn, Ni

– TOC has weaker binding but high capacity; more stable

 Allows estimation of pore-water metals (highly bioavailable)
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Metal fractions and bioavailability
Lake Roosevelt, WA (Besser et al. 2008b; Paulson and Cox 2007)

 Upstream site (LR7) was most toxic and had greatest total metals

 Downstream toxic sites (LR3, LR2) had much lower total metals

 Metals are in easily-extractable fractions (F1 and F2) 
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Metal bioavailability in pore water

• Measure dissolved metal concentrations

– Field:  Push-point (large volume) or airstone (small volume)

– Lab:  Centrifuge or pressure (large volume) 

– Lab or Field: Peeper (small volume)

• Free or labile metal fraction

– Specialized samplers (e.g., DGT)

– Geochemical modeling

– Biotic ligand models (BLM): model metal binding to site of uptake
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Pore-water sampling  methods
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Peeper 

Centrifuge

DGT (Zhang et al. 1995)
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BLM models for pore water?
(Copper toxicity and DOC; Wang et al 2009) 

 BLM predicts acute copper toxicity across wide range of water quality

 Few BLM studies with pore-water
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Sediment quality guidelines
(to protect benthic organisms)

1. Empirical SQGs (MacDonald et al. 2000)

Based on frequency of toxicity in large datasets 
(sediments with multiple toxicants)

– Probable Effect Concentration (PEC) is concentration associated 
with increased frequency of toxicity 

– PEC-Quotient = sediment metal concentration / PEC

• Can sum PEC-Quotients to characterize metal mixtures
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Application of PEC Quotients
(Besser et al. 2010; MacDonald et al 2009)

 Big River, MO (left): mussel toxicity at Zn-PEQ  >1.0

 Tri-States (right):  amphipod toxicity at Sum-PEQ  near 10
27
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Sediment quality guidelines (continued)

2. Equilibrium Sediment Benchmarks (ESBs; USEPA 2005)

Assumes pore water is primary exposure route

– Normalize metals to acid-volatile sulfide (AVS):

• No toxicity if simultaneously-extracted metals (SEM) > AVS

• (SEM = sum of Ag, Cu, Pb, Cd, Zn, and Ni)

– Then normalize to TOC:  (SEM‐AVS)/TOC

• Range of uncertain toxicity = 130 to 3000 umol/g (USEPA 2005)
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AVS normalization of nickel toxicity
Ni-spiked sediments (Besser, unpublished data)

 Wide range of toxicity (expressed as total Ni) among eight sediments 

 Normalizing to [SEM-AVS] reduces variation among sediments
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Application of sediment ESB
(Tri-State Mining District; MacDonald et al 2009)

 Hyalella survival corresponds to [(SEM-AVS)/TOC]:

– Narrower range of uncertainty  (low AVS, low TOC)

Amphipod toxicity -- Tristate 2007
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Take-home points

• Sediment toxicity testing has many applications.

• Whole-sediment tests are realistic and broadly applicable.

• Test with multiple species and endpoints.

• Select of appropriate reference site(s).

• Validate toxicity vs. evidence of community impacts.

• Characterize controls on metal bioavailability.
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